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Abstract

We investigate the relationship among internal and ex-
ternal visualizations and domain knowledge in expert
scientists. We observed scientists as they analyzed their
own data using computer-based visualization tools. All
the scientists used sequences of dynamic mental images
(conceptual simulations) in their investigations. They
used conceptual simulations primarily to evaluate hy-
potheses about the appearance of the data. They meas-
ured the result of the simulation against the empirical
data in a process of alignment that allowed them to esti-
mate the fit between the hypothesized and the actual re-
sults. A model of this process is discussed.

Introduction
In his most famous "thought experiment," Einstein
imagined himself traveling next to a beam of light. In-
sights from this mental visualization process led even-
tually to his formulation of the special theory of rela-
tivity (Shepard, 1988). According to Einstein himself,
the use of "more or less clear images which can be 'vol-
untarily' reproduced and combined" was crucial to his
thinking (Hadamard, 1945).

The use of visual imagery, whether internal or exter-
nal, appears to be an important aspect of science.
Shephard (1988) has identified numerous instances of
the importance of mental visualization in scientific dis-
covery and problem solving for many famous scientists.
Furthermore, external visualization is used by almost all
scientists, at the very least to represent and display data
as an aid to analysis, if not as an aid to scientific dis-
covery. In contemporary science, these visualizations
are frequently computer-generated and may range from
relatively simple 2-dimensional graphs to highly com-
plex representations of multi-dimensional data. The
advantages of using external graphical representations
have been demonstrated by, for example, Cheng and
Simon (1995), Larkin and Simon, (1987), and Tabach-
neck-Schijf, Leonardo, and Simon, (1997).

Although external visualizations are commonly used
by scientists to explore large datasets, little is known
about how complex visualizations are actually used or
how they fit into the important cycle of hypothesis gen-
eration and evaluation that constitutes a crucial compo-
nent of scientific reasoning. However, it does seem to

be the case that the experts’ use of visualizations in-
volves mentally manipulating displayed images in order
to extract additional, implicit information from them
(Trafton et al., 2000). It also appears that people can
and do apply this kind of manipulation to ad hoc mental
images that they have created to solve a particular
problem (Qin & Simon, 1990). Trafton has proposed a
framework of spatial transformations by which these
manipulations can be categorized and investigated
(Trafton, Trickett, & Mintz, 2001).

In addition to strategic knowledge (such as data in-
terpretation skills), an important component of scien-
tific thinking is the extensive domain knowledge that
scientists acquire during their years of training (Er-
icsson & Charness, 1994; Schunn & Anderson, 1999).
As scientists inspect visualizations of their data, their
domain knowledge not only guides them to look for
certain patterns but also provides a basis for explaining
those patterns. How, then, do scientists integrate their
theoretical (domain) knowledge with data in these ex-
ternal representations? When they generate hypotheses
to account for observed data, how do they evaluate
those hypotheses? What role, if any, is played by proc-
esses of internal visualization, such as those described
by Einstein?

The goal of this paper is to investigate the relation-
ship among scientists' theoretical domain knowledge,
the external data visualizations they use, and their use
of internal, or mental, visualization. We propose that
scientists bring their theoretical knowledge to bear on
currently displayed data through a specific process of
mental visualization that we term "conceptual simula-
tion." We argue that they create this conceptual simula-
tion based upon their domain knowledge or on the cur-
rent hypothesis. We suggest that they first create a set
of dynamic mental images, which acts as a sort of
“movie in the mind” (conceptual simulation), and then
overlay the end product of this simulation on the actual
data represented in the visualization (a process of
alignment). A close match indicates support for the
accuracy of the simulation, whereas discrepancies are
viewed as evidence that the simulation cannot account
for the empirical data. Finally, we propose that this se-
quence of cognitive operations is primarily a strategy
for the evaluation of hypotheses.



Method
In order to investigate the issues discussed above, we
have adapted Dunbar’s in vivo methodology (Dunbar,
1995; Trickett, Trafton & Schunn, 2000). This approach
offers several advantages. First, it allows observation of
experts, who can use their domain knowledge to guide
their strategy selection. Second, it allows the collection
of "on-line" measures of thinking, so that the scientists'
reasoning can be examined as it occurs (Ericsson &
Simon, 1993). Finally, the tasks (experiment design,
data analysis, etc) conducted by the scientists, as well
as the tools they use, are fully authentic.

Two sets of scientists were videotaped while con-
ducting their own research. All the scientists were ex-
perts, having earned their Ph.D.s more than 6 years
previously. In the first set, two astronomers, one a ten-
ured professor at a university, the other a fellow at a
research institute, worked collaboratively to investigate
computer-generated visual representations of a new set
of observational data. At the time of this study, one
astronomer had approximately 20 publications in this
general area, and the other approximately 10. The as-
tronomers have been collaborating for some years, al-
though they do not frequently work at the same com-
puter screen and the same time to examine data.

In the second dataset, a physicist with expertise in
computational fluid dynamics worked alone to inspect
the results of a computational model he had built and
run. He works as a research scientist at a major U.S.
scientific research facility, and had earned his Ph.D. 23
years ago. Having inspected the data earlier, had made
some adjustments to the physics parameters underlying
the model and was therefore revisiting the data.

Both sets of scientists were instructed to carry out
their work as though no camera were present, without
explanation to the experimenter (Ericsson & Simon,
1993).  The relevant part of the astronomy session
lasted about 53 minutes, and the physics session, 15
minutes. All utterances were transcribed and segmented
according to complete thought. All segments were
coded by 2 coders as on-task (pertaining to data analy-
sis) or off-task (e.g., jokes, phone interruptions, etc.).
Inter-rater reliability for this coding was over 95%. Off-
task segments were excluded from further analysis. On-
task segments (N = 649 [astronomy] and N = 176
[physics]) were further coded as described below.

The Tasks and the Data
Astronomy The data under analysis were optical and
radio data of a ring galaxy. The astronomers’ high-level
goal was to understand its evolution and structure by
understanding the flow of gas in the galaxy. In order to
understand the gas flow, the astronomers must make
inferences about the velocity field, represented by con-
tour lines on the 2-dimensional display.

The astronomers’ task was made difficult by two
characteristics of their data. First, the data were one- or
at best 2-dimensional, whereas the structure they were

attempting to understand was 3-dimensional. Second,
the data were noisy, with no easy way to separate noise
from real phenomena. Figure 1 shows a screen snapshot
of the type of data the astronomers were examining. In
order to make their inferences, the astronomers used
different types of image, representing different phe-
nomena (e.g., different forms of gas), which contain
different information about the structure and dynamics
of the galaxy. In addition, they could choose from im-
ages created by different processing algorithms, each
with advantages and disadvantages (e.g., more or less
resolution). Finally, they could adjust some features of
the display, such as contrast or false color.

Figure 1: Example of data examined by astronomers.
Radio data (contour lines) are laid over optical data.

Physics The physicist was working to evaluate how
deep into a pellet a laser light will go before being re-
flected. His high-level goal was to understand the fun-
damental physics underlying the reaction, an under-
standing that hinged on an understanding of the relative
importance and growth rates of different modes. The
physicist had built a model of the reaction; other scien-
tists had independently conducted experiments in which
lasers were fired at pellets and the reactions recorded. A
close match between model and empirical data would
indicate a good understanding of the underlying theory.
Although the physicist had been in conversation with
the experimentalist, he had not viewed the empirical
data, and in this session he was investigating only the
results of his computational model. However, he be-
lieved the model to be correct (i.e., he had strong ex-
pectations about what he would see), and in this sense,
this session may be considered confirmatory.

The data consisted of two different kinds of repre-
sentation of the different modes, shown over time



(nanoseconds). The physicist was able to view either a
Fourier decomposition of the modes or a representation
of the “raw” data. Figure 2 shows an example of the
physicist's data. He could choose from black-and-white
or a variety of color representations, and could adjust
the scales of the displayed image, as well as some other
features. He was able to open numerous views simulta-
neously. A large part of his task was comparing images,
both different types of representation of the same data
and different time slices represented in the same way.

Figure 2: Example of data examined by physicist
Fourier modes (left) and raw data (right)

Coding Scheme
Our goals in this research are first to establish the exis-
tence of conceptual simulations across different datasets
and second, to investigate their use in the analysis of
data by expert scientists using their own data visualiza-
tion tools. We propose that conceptual simulations are
used to evaluate hypotheses, and that this evaluation
occurs when the scientists align the results of the simu-
lation against the actual data. Consequently, we identi-
fied all hypotheses proposed by the scientists, all con-
ceptual simulations, and all utterances that align a
mental image with the data in the current visualization.

These processes involve cognitive operations on both
internal and external images. Trafton's spatial transfor-
mation framework (Trafton, Trickett, & Mintz, 2001) is
designed to capture mental manipulations of images.
Therefore, in order to maximize the reliability with
which these codes were applied, we used a Spatial
Transformation Analysis (explained below) to identify
conceptual simulations and alignments in each protocol.
We now describe this coding scheme (hypothesis, con-
ceptual simulation, alignment) in detail.

Hypotheses Statements that attempted to account for
the appearance of the data were coded as hypotheses.
For example Astronomer 1 (hereafter referred to as A1)
noticed an area where the velocity contour "sort of dips
under, sort of does a very non-circular motion thing."
Astronomer 2 (hereafter referred to as A2) asked if this
is "significant." A1 suggested that the phenomenon
might indicate a "streaming motion" (hypothesis).

We foresaw that some hypotheses would be dis-

missed immediately and would therefore not be rele-
vant to our analyses. We identified all hypotheses and
coded them as elaborated or unelaborated. Elaboration
consisted of one or more statements supporting or op-
posing the hypothesis. Those that were not discussed
after being proposed were coded as unelaborated.
Spatial Transformation Analysis Spatial transforma-
tions are cognitive operations that a scientist performs
on a visualization. Sample spatial transformations are
mental rotation (Shepard, 1971), creating a mental im-
age, modifying that mental image by adding or deleting
features, mentally moving an object, comparisons be-
tween different views (Kosslyn, Sukel, & Bly, 1999;
Trafton, Trickett, & Mintz, 2001), and anything else a
scientist mentally does to a visualization in order to
understand it or facilitate problem-solving. Note that a
spatial transformation can be done on either an internal
(i.e., mental) image or an external image (e.g., a com-
puter-generated visualization). What all spatial trans-
formations have in common is that they involve the use
of mental imagery. Statements by which the scientists
directly extracted information from the visualization
were not considered spatial transformations. A more
complete description can be found at
http://iota.gmu.edu/users/trafton/405st.html.

For every utterance in each protocol we evaluated
whether there was a spatial transformation. Spatial
transformations were further coded as Create Image,
Modify Image (Add or Delete), or Comparison. Table 1
shows examples of each category of spatial transforma-
tion (note that these utterances are independent of one
another and do not represent a sequence).

Utterance
Spatial Trans-

formation
I can easily imagine a gas as
being….

Create Image

The Kittemandefax would be
right along this region [points
to area on displayed image]

Modify Image:
Add

If there was no streaming mo-
tion or sort of piling of gas

Modify Image:
Delete

Also, look at the rest of the
ring—you see similar kinds of
sort of intrusions

Comparison

Table 1: Examples of Spatial Transformations.

Alignment Alignment is a specific type of comparison
(Trafton, Trickett, & Mintz, 2001) in which a mental
image is overlaid over a displayed image, in order to
make an estimation of “fit” between the two images.
Statements which compared a built-up  mental image
with the currently displayed visualization were coded as
alignments. For example, at one point, A1 commented,
"If you looked at a spiral arm [of a galaxy]…if there



was no streaming motion…the lines would show no
deflection as they went across the spiral arm." A1 ges-
tures to lines on the current display, indicating that he is
comparing these lines with the lines in his mental image
of the spiral arm (alignment). In this case, there is a
discrepancy between the two images, because the lines
in the displayed image do show deflection.
Conceptual Simulations A conceptual simulation is a
mentally constructed model of a phenomenon or data
representation. The assumption is that the scientist can
always view data in the display, but that he makes use
of additional information in memory that is not repre-
sented on the display, and that this additional informa-
tion is represented as a mental image (Kosslyn, 1990).
The initial image upon which the conceptual simulation
is based may be grounded in domain knowledge or in a
modification of the displayed image, or may be recalled
from memory. They key feature of a conceptual simu-
lation is that it involves a simulation “run” that alters
the image; this run may be explicit or implicit, as de-
fined below. Table 2 provides examples of the sequence
of spatial transformations that comprises a conceptual
simulation, with both explicit and implicit runs.

Conceptual simulations are defined formally as a
specific sequence of spatial transformations:

1. Create image: The scientist creates a mental image
that is different from the currently displayed image.
This image creation may occur via a (mental) modifi-
cation of the display, via domain knowledge, or via
memory (recall of a previously viewed image).

2a). Explicit Run: The scientist builds on the created
image by spatial transformation (e.g., extend, add, etc.)
such that its state is changed; or

2b). Implicit Run: The scientist refers to a “result” (in-
spection) of a modified image, which implies the
change of state necessary for a run to have occurred.

It should be noted that these codes are not mutually
exclusive—the created image and explicit run can occur
in the same utterance (though this occurred less than
15% of the time). Figure 3 shows a schematic diagram
of a conceptual simulation, highlighting the difference
between explicit and implicit runs.

Figure 3: Schematic diagram of a conceptual simulation

Results
First, we establish the existence of conceptual simula-
tions; we then examine the relationship among con-
ceptual simulations, hypotheses, and alignment.

A subset of the astronomy protocol was coded by two
independent coders. Initial inter-rater reliability was
more than 90% and all disagreements were resolved by
discussion. Because we found high agreement in the as-

Table 2: Examples of conceptual simulations. A1 and A2 represent astronomer 1 and 2, respectively.

Implicit Run

Explicit Run

Create
Image

Spatial
Transfor-

mation

State
Change

Result

Utterance
Spatial

Transform-
ation

Explanation

A2: I mean,… in a perfect sort of spider
diagram,

Create A2 creates image of theoretical spider diagram (not
visible on display)

if you looked at the velocity contours
without any sort of streaming motions,
without streaming motions,…

Modify:
delete

A2 modifies image of spider diagram by deleting
streaming motions, thus changing the state of the
phenomenon (explicit run)

you’d probably expect these lines here to
go all the way across, you know, the
ring, without any sort of, um, changes
here in the slope and stuff

Align

A2 aligns modified image of spider diagram with
actual displayed image and compares the appearance
(direction) of the lines. The images do not match,
suggesting the presence of streaming motions.

A1: Maybe it’s a projection effect. Hypothesis stated by A1
A2: It’s a projection effect, Reiteration of hypothesis by A2

A2: although if that’s true Create A2 creates image in which phenomenon under
consideration is, in fact, a “projection effect”

A2: there should be a very large velocity
dispersion here.

Modify: add
Align

A2 modifies image with addition of expected large
velocity dispersion. He inspects the result of this
modification (implicit run)  and aligns to currently
displayed image (“here”). The match fails.

A2: I don’t recall, I don’t think I saw
anything with velocity dispersion in it

Continued
alignment

A2 searches memory for a match but fails to produce
one.



tronomy dataset, we expect agreement in the physics
dataset to be high also.

Do Conceptual Simulations Exist?
In the astronomy dataset, there were 22 conceptual
simulations, 11 by each astronomer (approximately one
every 2.5 minutes), accounting for 9% of 649 on-task
segments. In the physics dataset, there were 4 concep-
tual simulations (approximately one every 3.75 min-
utes), accounting for 9% of 176 on-task utterances.

How Were Conceptual Simulations Used?
In order to determine how conceptual simulations were
used, we analyzed the relationship between conceptual
simulations and 2 other types of utterance: hypotheses
and alignments. Table 3 summarizes these results.

Astronomy Physics
Hypotheses with conceptual

simulations
76% 50%

Conceptual simulations with
hyotheses

91% 75%

Conceptual simulations with
alignment

86% 75%

Table 3: Relationship between conceptual simulations,
elaborated hypotheses, and alignment

Conceptual Simulations and Hypotheses There were
21 (astronomy) and 9 (physics) hypotheses. Only elabo-
rated hypotheses are considered in the following analy-
ses (81% for astronomy, 66% for physics). As Table 3
shows, the evidence for or against the majority of these
hypotheses contained a conceptual simulation.

In addition to the fact that most hypotheses were as-
sociated with conceptual simulations, conversely, most
of the conceptual simulations were associated with a
hypothesis (see Table 3). By far the most frequent use
of conceptual simulations was thus in elaborat-
ing—supporting or opposing—a hypothesis.

If a conceptual simulation was not associated with a
hypothesis, how was it used? In the astronomy dataset,
the remaining conceptual simulations were used to
clarify theoretical issues necessary to an understanding
of the data. For example, A2 uses a conceptual simula-
tion to help understand what happens theoretically in a
galaxy with an expanding ring. However, he is not ex-
ploring a specific hypothesis at this point, but building a
theoretical picture that he then matches against the dis-
played data. In the physics dataset, only one conceptual
simulation did not follow a hypothesis. In this case, the
conceptual simulation was used to develop a hypothe-
sis; that is, the hypothesis was the outcome of the con-
ceptual simulation. Although there are few instances
where conceptual simulations do not elaborate a hy-
pothesis, it does appear that they are used to link theory
and data in ways other than evaluating a hypothesis.

Conceptual Simulations and Alignment As Table 3
shows, for most of the conceptual simulations, the very
next utterance was an alignment which matched the
simulation results with the currently displayed image.
Hypotheses, Conceptual Simulations, and Alignment
The results discussed above suggest a sequence of ac-
tivity by which the scientists investigated their data, in
which a hypothesis was proposed, and then evidence in
support of or against this hypothesis was considered. A
significant part of this evidence consisted of a concep-
tual simulation, the results of which were inspected and
aligned with the actual data. The extent to which a
match was found was taken as evidence for or against
the original hypothesis.

General Discussion and Conclusion
In this research, we have explored the use of internal
and external visualizations and their relationship to do-
main knowledge among expert scientists in two do-
mains. We have shown that these scientists not only use
internal, mental visualizations, but also modify and
otherwise manipulate those visualizations in conceptual
simulations. The fact that these conceptual simulations
occur in two quite different datasets indicates that they
are not domain specific. Furthermore, their use by three
separate individuals suggests that they are not the result
of an individual difference. Finally, their use in differ-
ent situations (by a single scientist working alone, as
well as by a dyad) indicates that conceptual simulations
are not necessarily a rhetorical device, used to persuade
another person of the validity of an argument.

We have further shown that these scientists use these
conceptual simulations primarily to evaluate hypotheses
when they are analyzing data, and this evaluation takes
the form of aligning the results of the simulation with
the actual data. The scientists determine how well the
outcome of the simulation fits the data in order to assess
the validity of the hypothesis on which the simulation
rests. This process of alignment and judgment of fit is
an important part of the hypothesis-evaluation process.

In this way, conceptual simulations may serve a
similar function to full computational models that are
increasingly used as a means of hypothesis evaluation
in many sciences. Like a conceptual simulation, a com-
putational model also represents the instantiation of the
scientist’s theoretical assumptions. Once the model is
built, it is usually aligned against some empirical data,
and measures of fit (formal or informal) are taken. A
good fit between model and data is generally accepted
as evidence for the validity of the model’s underlying
assumptions. A poor fit, on the other hand, indicates
that those assumptions are incorrect.

However, a computational model is an expensive un-
dertaking (in time and other resources). Conceptual
simulations may serve as a kind of preliminary screen-
ing strategy that allows the scientist to “weed out” hy-



potheses that hold no promise of success and focus on
those that indicate a good fit with the data. There is
some evidence for this interpretation, as A1 comments
that the analysis session has been helpful because “I can
see where I need to make some models.” Conceptual
simulations may thus be considered a type of “model-
ing-on-the-fly” that offers an inexpensive but effective
first pass at evaluating the scientist's conceptual or
theoretical understanding of the data.

Our results have several implications. At an applied
level, researchers in science education have noted that
students have difficulty applying theoretical knowledge
—for example, predicting the trajectory of a moving
object (e.g., Caramazza, McCloskey, & Green, 1981).
One solution has been to build visualization tools, such
as computer simulations and virtual reality worlds, that
allow students to manipulate visual representations of
abstract phenomena and match the results of those ma-
nipulations against their predictions (e.g., White, 1993).
Our analyses show that this is an authentic strategy
used by practicing scientists, although the scientists, of
course, conduct these manipulations mentally.

At a theoretical level, current models of scientific
reasoning do not include the type of mental manipula-
tion of imagery represented by conceptual simulations;
however, it appears that this is an important component
of the process of data analysis, and therefore of “doing
science.” A similar set of processes may underlie the
function-follows-form reasoning packets identified by
Griffith, Nersessian, & Goel (2000). The relationship
between conceptual simulations and other model-based
reasoning strategies warrants further investigation.
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